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Stasto, Golec-Biernat and Kwiecinski (2001)

The geometric scaling of σDIS(x, Q2)

( ))(Q)( 22 YrTrT SY
=

this is seen in the data with λ ≈ 0.3

saturation models fit well F2 data

and they give predictions which describe 

accurately a number of observables at 

HERA (F2
D, FL, DVCS, vector mesons)

and RHIC (nuclear modification factor in d-Au)

Golec-Biernat and Wüsthoff (1999)

Bartels, Golec-Biernat and Kowalski (2002)

Iancu, Itakura and Munier (2003)

update



C.M. and L. Schoeffel, hep-ph/0606079

Geometric scaling in diffraction
( ))(Q)( 22 YrTrT SY

= ⇒

scaling also for vector meson production :



Diffusive scaling



The dipole scattering amplitude Y
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λ : average speed
D : diffusion coefficient

Mueller and Shoshi (2004) Iancu and Triantafyllopoulos (2005)

Iancu, Mueller and Munier (2005) Mueller, Shoshi and Wong (2005)

One obtains the physical amplitude from an
event-by-event dipole amplitude  which obeys a 
Langevin equation
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A new scaling law

[ ] DYSS <<22 Q/Qln Iancu, Mueller and Munier (2005)

C.M., G. Soyez, B.-W. Xiao, hep-ph/0606233

Properties of the dipole amplitude have been obtained by exploiting the similarities 
between the QCD equation and the s-FKPP equation well-known in statistical physics
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The saturation scale is a stochastic variable distributed according to a Gaussian probability law:



(for ) 

A new scaling law

[ ] DYSS <<22 Q/Qln Iancu, Mueller and Munier (2005)

C.M., G. Soyez, B.-W. Xiao, hep-ph/0606233

Properties of the dipole amplitude have been obtained by exploiting the similarities 
between the QCD equation and the s-FKPP equation well-known in statistical physics

Y
rT )(

If  DY << 1, the diffusion is negligible and with( ))(Q)( 22 YrTrT SY
=

we recover geometric scaling








−=
DYDY

P S )Q/Qln²(
exp1)Q(ln

22
S2

S π

The saturation scale is a stochastic variable distributed according to a Gaussian probability law:



(for ) 

A new scaling law

[ ] DYSS <<22 Q/Qln Iancu, Mueller and Munier (2005)

C.M., G. Soyez, B.-W. Xiao, hep-ph/0606233

Properties of the dipole amplitude have been obtained by exploiting the similarities 
between the QCD equation and the s-FKPP equation well-known in statistical physics

Y
rT )(

If  DY << 1, the diffusion is negligible and with( ))(Q)( 22 YrTrT SY
=

we recover geometric scaling








−=
DYDY

P S )Q/Qln²(
exp1)Q(ln

22
S2

S π

The saturation scale is a stochastic variable distributed according to a Gaussian probability law:

[ ]( )DYYrTrT SY
)(Qln)( 22−=

we even know the functional form for :
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2
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If  DY >> 1, the diffusion is important and

[ ] DYS <<− 2Qr²ln

Iancu and Triantafyllopoulos (2005), C.M., R. Peschanski

and G. Soyez, Phys. Rev. D73 (2006) 114005 
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Consequences for the observables
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Y. Hatta, E. Iancu, C.M., G. Soyez and D. Triantafyllopoulos, Nucl. Phys. A773 (2006) 95



• the cross-sections (total and diffractive) are dominated by small dipole sizes

• there is no Pomeron (power-like) increase

• the diffractive cross-section is dominated by the scattering of the quark-antiquark component

Some analytic estimates

Analytical estimates for σDIS(x, Q2) in the diffusive scaling regime:
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In the diffusive scaling regime (up to momenta Q² much bigger than the saturation scale ):

• cross-sections are dominated by rare events, in which the photon hits a black spot,
that he sees dense (at saturation) at the scale Q²

• saturation is the relevant physics

• the features expected when are extended up to much higher Q²



Conclusions
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an intermediate energy regime:

geometric scalingHERA

it seems that HERA is probing

the geometric scaling regime

In the diffusive scaling regime, saturation is the relevant physics

up to momenta much higher than the saturation scale

22 1~Q r

at higher energies, a new

scaling law: diffusive scaling

[ ]( )DYYrTrT SY
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within the LHC energy range?


